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A theoretical framework for light scattering from individual nanoscale particles or structures is developed.
The main considerations distinguishing the present treatment from the theories developed for conventional
light-scattering experiments are the experimental requirements for the detection of the limited light from a
single scatterer. These requirements include use of a high numerical aperture microscope objective, annular
illumination, and the reduced linear dichroism instead of depolarization ratio. It is shown how these issues
are considered in relating the microscopic polarizability tensor to the far-field experimental observables. The
approach is further extended to include the dynamical response in the scattering polarization and spectrum
and discussed in the context of the particle’s rotational diffusion. For dynamic light scattering, analytical
expressions are derived to elucidate the interrelationship between the experimental configuration, the observable,
the polarizability tensor, and the diffusion tensor. Specific examples including static imaging and dynamic
correlation for rodlike and spheroidal scatterers are discussed to illustrate the application of the theory.

1. Introduction

The use of light scattering to investigate individually isolated
particles and structures is a relatively new development that
provides a direct means to image and probe nanoscale objects
well beyond the diffraction-limited optical resolution.1 It is
particularly advantageous for far-field studies of nanostructures
that do not luminesce intensely. Recent examples include carbon
nanotubes,2,3 iron oxides,4 gold nanoparticles5-8 and nanorods,9

silver nanoparticles,10,11 nanocubes,9 and nanoprisms,12,13 to
name a few (for brevity, particle and nanoparticle are used
interchangeably hereafter to represent nanoscale objects that are
amenable to such light scattering studies). Because the particles
are investigated one at a time, the distribution of a certain
particle property in a population can also be studied in detail.14

This is especially important for the basic research of nanoscale
structures, which usually exhibit a variety of shapes and sizes
in a sample due to difficulties in the precise control of these
parameters. Further, because the spectroscopic characteristics
of the scattered light also depend on the dielectric response of
the scatterer’s medium,15,16 single-particle light scattering in
principle can be used to probe changes in its local environment.
Although most of the studies to date have focused on the
frequency component of the scattering light, the inclusion of
other spectroscopic observables such as polarization should be
valuable in providing such additional information as rotational
motion17 as well as the shape of the scatterer.8,18 The goal of
this work is to outline a theoretical framework allowing one to
quantitatively relate experimental observations both to the static
orientation and to the dynamical rotation of a single scatterer.

The treatment of single-particle light scattering differs from
the more extensively studied bulk dynamic light scattering
measurements19 in the way in which experimental observables
are defined and averaged. In conventional dynamic light
scattering, heterodyne-detected depolarization correlation func-

tions are used to extract rotational dynamics whereas in single-
particle light scattering, the reduced linear dichroism is typically
used to extract rotational dynamics. Further, to relate the
heterodyne-detected interferometric correlation to intensity
depolarization correlation in bulk dynamic light scattering, it is
necessary to assume that the scattered light originates from a
large number of independent light scatterers.19 This assumption
breaks down in single-particle dynamic light scattering where
there is only one light scatterer. The second distinct feature of
single-particle light scattering has to do with the way experi-
ments are conducted. Due to the small scattering cross section
of a single nanoparticle, a microscope objective of high
numerical aperture is typically used to collect the scattered light.
Under this configuration, the large solid angle of collection has
to be included in the analysis for both static imaging and
dynamic correlations. Indeed, for fluorescence single-molecule
experiments, it has been shown that it is important to specifically
include the effect of light-collecting lens in imaging the dipole
emission pattern20,21and the dipole orientation.22 It has also been
shown that the time correlation of reduced linear dichroism is
non-exponential.23,24 It is therefore expected that issues of this
nature should also play an important role in the interpretation
of single-particle scattering experiments and need to be clarified.
On the other hand, with the rapid advancement of new
experimental schemes, quantitative analyses of experimental
results are anticipated to help make new observations.

This paper presents for the scattering problem a consistent
theoretical framework that includes the aforementioned con-
siderations in both the static and the dynamic cases. The
discussion focuses on the polarization and spectral response of
the scattered light, as well as on their time dependence in the
context of rotational diffusion. The derivation is restricted to
classical linear optics with homogeneous materials in which the
experimental signal is recorded using a homodyne-detected
square-law detector such as avalanche photodiodes and photo-
multiplier tubes. The theoretical structure nonetheless should† E-mail: hawyang@berkeley.edu.
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be extensible to include illumination by a focused laser beam3,6

or by evanescent fields,25,26and also to experiments that detects
nanoparticles interferometrically.27 It is hoped that the current
analysis may contribute to the fundamental understanding of
nanoscale structures as well as to encourage further development
of more advanced spectroscopic schemes.

The outline of the article is as follows: Section II describes
the theoretical framework that is suitable for single-particle light
scattering experiments. It emphasizes the transformation between
the microscopic, polarizability frame, and the laboratory frame
because these transformations give rise to the experimental
observables. This procedure is general and allows a unified
treatment of different experimental schemes that may result in
different time-dependent observations. In section III, the case
of scattering from an immobilized particle is discussed. Here,
it is assumed that the particle moves very slowly such that the
experimental time resolution is sufficient to resolve its move-
ments. This way, the particle can be viewed as “static” on the
experimental time scale. The results can be directly extended
to time-dependent imaging. To illustrate the use of the theory
described in section II, the discussion begins with a simple case
where a rodlike scatterer (only one appreciable polarizability
component) is illuminated at a fixed angle. It then develops to
include the case where the rodlike scatterer is illuminated
annularly (dark-field illumination). As an application of these
results, a method to rapidly image the orientation of individual
rodlike scatterer is also presented, providing a theoretical basis
for studying the time-dependent orientation changes of a
nanoscale scatterer. To illustrate the use of the theory for more
complicated cases, this section concludes with the discussion
of another frequently encountered case, scattering by a single
spheroid with annular illumination. In general, though single-
particle or the single-molecule dynamics are most revealing,
they are also the most challenging both theoretically and
experimentally. Section IV extends the treatment to dynamic
light scattering focusing on the treatment of rotational diffusion
of the particle. This section is motivated by a recent experimental
development that in principle will enable spectroscopic mea-
surements on a nanoprobe freely moving in the three-
dimensional space.14,28

2. Theoretical Framework for Single-Particle Light
Scattering

A. Coordinate Systems and the Transformations between
Them. There are three frames of reference involved in the
process. They are (1) the body-fixed frame associated with the
polarizability tensor of the target particle, (2) the laboratory
frame, and (3) the frame associated with the electric field of
the incident or scattered radiation. The transformation between
these coordinate systems connects experimental observations
to the microscopic properties of the particle under study. When
appropriate, vectors or transformations associated with these
frames are denoted by a subscript P, L, and E, respectively.

The polarizability frame is defined by the principal axes of
the electric polarizability tensor for the particle,

corresponding to the 1ˆ, 2̂, and 3̂ directions (cf. inset in
Figure 1), whereεm(ω) is the complex permittivity of the particle
relative to its medium. The laboratory frame is based on the
experimental setup and serves as the primary coordinate of

reference. As shown in Figure 1, with the target particle at the
origin O, theZ-axis is defined as the direction away from the
microscope objective; therefore, the scattered field is collected
at the -Ẑ direction. TheX- and Y-axes are defined by the
specific experimental configuration, for example, by the polar-
ization analyzer or by the direction of the incident light.

The E-field frame is defined by the propagation direction and
polarization of the electric magnetic field,EB. For the incident
field (denoted by subscript i), its propagation direction is
considered to be along theÊi,x direction with its polarization

rP[εm(ω)] ) (R1(εm(ω)) 0 0
0 R2(εm(ω)) 0
0 0 R3(εm(ω)) ) (1)

Figure 1. Relative orientation of various reference frames in single-
particle scattering experiments. The laboratory frame is defined by the
unit vectorsX̂, Ŷ, andẐ. The nanoparticle is assumed to reside at the
origin, O, which is also the focus of the microscope objective lens.
The E-field frame is defined by the propagation direction (alongÊi,x)
and polarization (alongÊi,z) of the electric magnetic field,EB (Êi,y ) Êi,z

× Êi,x, where× denotes an outer product). Field components parallel
and perpendicular to theEi,x - Ẑ incident plane is denoted asEBi,|| and
EBi,⊥, respectively (EBi,x not shown for clarity). The field polarization
assumes an angleâ relative to the incident plane. The incident filed
impinges on the particle with zenithΘi and azimuthΦi with respect to
the laboratory frame. The scattered field propagates along ther̂s

direction with azimuthΦs at an angle ofΘs relative to the-Ẑ direction.
The X̂- andŶ-polarized scattered fields after the microscope objective
are denotedÊs,X andÊs,Y, respectively. The inset shows the transforma-
tion from the body-fixed polarizability tensor frame (defined by unit
vectors 1̂, 2̂, and 3̂) to the laboratory frame through the Euler angles,
θ, ψ, andφ. TheŶ′ vector denotes the intersection of theX̂-Ŷ and the
1̂-2̂ planes. The dashed box at the bottom shows an experimental
configuration for the analysis of spectral fluctuations.IX,B andIX,R denote
respectively the detected intensities for the blue and the red spectral
components in theX-polarized scattering light.
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along theÊi,z direction (Êi,y is defined throughÊi,y ) Êi,z × Êi,x,
where× denotes an outer product),

The incident field impinges on the particle with zenithΘi and
azimuthΦi with respect to the laboratory frame. TheÊi,x and
theẐ vectors define the incident plane. Field components parallel
and perpendicular to the incident plane are denoted asEBi,|| and
EBi,⊥, respectively (EBi,⊥ not shown for clarity).15 Such a separation
of incident polarizations allows a relatively straightforward
treatment for polarized and unpolarized illumination. In general,
the polarization assumes an angleâ relative to the incident plane.

The scattered field (denoted by subscript s) propagates along
the r̂s direction with azimuthΦs at an angle ofΘs relative to
the-Ẑ direction, expressed in the laboratory-frame coordinate
as

Similar to the incident field, ther̂s and Ẑ vectors define the
scattering plane. The scattered field is collected by a collimating
lens, usually by a microscope objective of high numerical
aperture (NA). After coming out the collimating lens, the
scattered field is directed through a polarization analyzer or
spectral analyzer, and detected by a square-law detector through
Iobs ∝ |EBobs|2, whereIobs is the detected photon intensity for the
polarization or spectral observables.

These different reference frames can be related to each other
using the Euler angles. The Euler angles used here follow the
Z-Y-Z convention with counterclockwise rotation.29 These
frame transformations are achieved by the following Cartesian
rotation matrices,

Therefore, the transformation of a vectorpbP from the polariz-
ability frame to the laboratory frame is given by

where

For brevity, the Euler angles (ψ, θ, φ) are denotedΩ in section
IV when discussing the rotational dynamics. The transformation
of a vectorEBE from the E-field frame to the laboratory frame is
given by

where

The propagation of the scattered field is redirected by the
collimating lens that also changes the direction of the
polarization.20-22 In contrast to the above-discussed coordinate
transformations for a vector fixed in space, the collimating lens
physically rotates the polarization (cf. Figure 2). The rotation
imparted by the collimating lens can be related to the scattering
anglesΘs and Φs. Following Axelrod30 and Fourkas22 this is
accomplished by first rotating the scattering vectorr̂s (cf. eq 3)
about theẐ-axis clockwise byΦs so that the scattering plane
coincide with theX̂-Ẑ plane, followed by rotating about the
Ŷ-axis counterclockwise byπ - Θs (note that whenΘs ) 0,
the scattering light propagates along the+Ẑ direction), and
finally rotating again about theẐ-axis counterclockwise byΦs.
These rotation operations redirect the scattering field to
propagate along the-Ẑ direction and correspond to the rotation
matrix,

Finally, only the scattering rays that propagate within the solid
angle, 0e Φs < 2π andπ - ∆ e Θs e π, will be collected by
the collimating lens. Here,∆ is related to the numerical aperture
of the collimating lens by

wheren0 is the index of refraction of the medium.
B. Experimental Observables.The task at hand is to relate

the experimental observables,Is,X andIs,Y, to the orientation of
the induced dipolepbL. In general, this dipole approximation is
valid when the particle size is much less than a characteristic
linear dimension,λ/(2π|εm - 1|). In practice, the theoretical
framework should be directly applicable so long as the dipole
approximation can be verified experimentally, e.g., via a separate
control experiment. With these in mind, one begins by consider-
ing a particle that is immobilized at the origin and is illuminated
by a monochromatic field at an optical frequencyω. Following
Bohren and Huffman,14 the incident field induces a dipole
moment,

rL is the particle’s polarizability tensor in the laboratory frame
and can be related to the particle’s principal axes of polarizability

Figure 2. Scheme for a fixed-angle illumination configuration. Note
how the polarization of a scattered light is rotated by the collimating
lens.

Rzr ) Rz[-Φs] Ry[-(π-Θs)] Rz[Φs] (9)

∆ ) sin-1(NA/n0) (10)

pbL ) εmrLEBi,L (11)

Êi,E ) Êi,z ) (001) (2)

r̂s ) cos(Φs) sin(π-Θs)X̂ + sin(Φs) sin(π-Θs)Ŷ +
cos(π-Θs)Ẑ (3)

Rx[θ] ) (1 0 0
0 cosθ sin θ
0 -sin θ cosθ )

Ry[θ] ) (cosθ 0 -sin θ
0 1 0
sin θ 0 cosθ )

Rz[θ] ) (cosθ sin θ 0
-sin θ cosθ 0
0 0 1) (4)

pbL ) RLPPBP (5)

RLP ) (RPL)
-1 ) (Rz[ψ] Ry[θ] Rz[φ])-1 (6)

EBL ) RLEEBE (7)

RLE ) Rz[π-Φi] Ry[-(π/2-Θi)] Rx[â] (8)
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by rL ) RLPrPRPL. For clarity, the frequency dependence of
εm andR is not explicitly expressed. The scattered radiation at
the far field is therefore proportional tor̂s × (r̂s × pkL).15

The scattering field that goes through the collimating lens
and reaches the detectors is

where

is the dipole moment induced by an incident field with unit
amplitude, andW0 ∝ ik3Ei/(4πεm) is a constant where the
proportionality takes into account such experimental factors as
the transmission coefficients in optics and detector efficiency.
At this point,EBdetectoris a function of the incident light frequency
(ω) and its direction (â, Θi, Φi), the orientation of the particle
(θ, φ, ψ), the scattering direction (Θs, Φs), and the numerical
aperture of the collimating lens (a function of∆). The intensities
as registered by the square-law detectors after the polarization
analyzer are

where theX and Y components can be easily extracted from
the CartesianEBdetector vector in the laboratory frame using
EBdetector,X ) (1,0,0)‚EBdetectorandEBdetector,Y ) (0,1,0)‚EBdetector. The
intensities Is and I0 here can have any unit that represents
experimental observables. For example, if the scattering field
is detected by a photon-counting detector, the intensity is then
defined as number of detected photons per unit time. Clearly,
the polarization state ofEBdetector is dependent on the incident
light, as is expected for scattering experiments. For example,
eq 14 is directly applicable to experiments that utilize polarized
incident light such as a laser. For an unpolarized illumination
light source, such as a lamp, the scattering intensity can be
calculated by combining the scattering intensities resulting from
EBi,|| andEBi,⊥ illuminations,15 Is,unpolarized) Is(EBi,||) + Is(EBi,⊥). In
single-molecule or single-particle experiments, the polarization
state of the emission or scattered light is typically expressed in
terms of the reduced linear dichroism, defined as

Equation 14 signifies an important difference between the
observables from the conventional dynamic light scattering
experiment and a single-particle scattering experiment. In the
latter, there is no ensemble averaging in the experimental
observable. Instead, the experimental observable is averaged
over time to attain appropriate signal-to-noise ratio. The explicit
time parameter in the equation illustrates this point. In practice,
the experimental observable is recorded by integrating the
intensity over a period ofδ, Ihs(t)δ ) ∫t-δ/2

t+δ/2Is(t′) dt′. In the
following section for static scattering, the explicit dependence
in time is omitted for clarity.

3. Light Scattering From an Immobilized Single Particle

To illustrate the application of the theoretical treatment, one
may begin with a case in which the target particle exhibits an

appreciable polarizability only along the 3 axis. For all practical
purposes, such a scatterer may be considered a “rod.” The results
for this simple case will be compared with results from more
complicated scenarios dealing with spheroidal scatterers. The
polarization property of the scattering light from a rodlike
scatterer is analogous to, and can be compared with, a well-
defined emission dipole from a single fluorescent molecule.
Experimentally, one may select a certain frequency such that
only one of the three principal polarizability components is
responsive to the incident light. Examples include the scattering
of a single gold nanorod31 and single carbon nanotubes.2

Two experimental configurations will be discussed for the
rodlike scatterer. In one configuration, the incident beam
impinges on the target particle with a fixed direction with respect
to the laboratory frame, typically at an oblique angle with respect
to theX̂-Ŷplane.2,3 In the other configuration, the incident light
constitutes an annular cone as in a dark-field microscope. It is
assumed the particle is immobilized, such that its surrounding
medium can be considered to exhibit a homogeneous electric
permittivity. Additional symmetry axes will need to be taken
into account if there is a mismatch in the index of refraction in
the immediate vicinity of the particle.32 Nevertheless, the same
theoretical framework should be applicable to relating any
polarizability tensor to experimental observables.

A. Illumination at a Fixed Incident Direction. Without loss
of generality, the incident plane is assumed in this case to
coincide with theX̂-Ẑ plane (Φi ) 0, cf. Figure 2). The
polarization of the incident light can be either parallel (â ) 0,
corresponding toEBi,||) or perpendicular (â ) π/2, EBi,⊥) to the
plane of incidence. Using eqs 2, 6, 8, and 13, the unit electric
field-induced dipole moments expressed in the laboratory frame
are

As expected,pkL,⊥ does not depend on the incident zenith angle,
Θi. The magnitudes of these induced dipoles depend on the
orientation of the particle relative to the direction and the
polarization of the incident light, given by

The experimental observablesIs,X and Is,Y are calculated using
eqs 9, 14, 16, and 17. It turns out that both parallel and
perpendicular illumination result in the same expression for the
scattering intensity. TheX and theY polarization components
are

and

respectively. In the above equations,A ) 1/6 - 1/4 cos∆ + 1/12

cos3 ∆, B ) 1/8 cos ∆ - 1/8 cos3 ∆, and C ) 7/48 - 1/16

pkL,|| ) R3(sin θ cosφ(-cosφ sin θ cosΘi + cosθ sin Θi)
sin θ sinφ(-cosφ sin θ cosΘi + cosθ sin Θi)
cosθ(-cosφ sin θ cosΘi + cosθ sin Θi)

)
pkL,⊥ ) R3(-sin2 θ cosφ sinφ

sin2 θ sin2
φ

cosθ sin θ sinφ
) (16)

|pkL,|||2 ) R3
2(sin θ cosφ cosΘi - cosθ sin Θi)

2

|pkL,⊥|2 ) R3
2 sin2 θ sin2

φ (17)

Is,||/⊥,X ) I0|pkL,||/⊥|2(A + B sin2 θ + C cos 2φ sin2 θ) (18)

Is,||/⊥,Y ) I0|pkL,||/⊥|2(A + B sin2 θ - C cos 2φ sin2 θ) (19)

EBdetector) W0Rzrr̂s × (r̂s × pkL) (12)

pkL ) rLÊi,L ) (RLPrPRPL)(RLEÊi,E) (13)

Is,X or Y(t) ∝ 1
4π ∫0

2π
dΦs∫π-∆

π |EBdetector,X or Y(t)|2 sin Θs dΘs

) I0( 1
4π ∫0

2π
dΦs∫π-∆

π |Rzrr̂s ×

(r̂s × pkL(t))detector,X or Y|2 × sin Θs dΘs) (14)

ød ≡ IX - IY

IX + IY
(15)
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cos∆- 1/16 cos2 ∆ - 1/48 cos3 ∆ are coefficients as defined by
Fourkas.22 Because these coefficients only depend on the
numerical aperture of the collimating lens (cf. eq 10), they are
therefore constants for a given experimental setup.

In the limit of |pkL,||/⊥|2 f 1, eqs 18 and 19 become identical
to equations derived for single-molecule fluorescence polar-
izations under circularly polarized excitation (eqs 4a and
4c of Fourkas,22 respectively). Therefore, the polarization of
this scattering problem can be decomposed into two independ-
ent contributions. One is due to the relative orientation of the
incident beam and theR33̂ polarizability of the particle, the
|pkL,||/⊥|2 term, whereas the other is due to the relative orienta-
tion of the induced dipole (along 3ˆ) and the polarization
analyzer, the (A + B sin2 θ ( C cos 2φ sin2 θ) term. Compared
with the analysis of fluorescence from a single chromophore,
the former is analogous to the excitation and the latter to
the emission. Indeed, for a fluorescent singe molecule, if
the absorption and emission dipoles overlap, eqs 18 and 19 will
be the appropriate equations to use for linearly polarized
excitation.

For cases in which the illumination light is unpolarized, the
X- andY-polarized scattering intensities are simply

and

respectively. Thus the basic forms of the experimental
observables for both the polarized and unpolarized light
source are the same for the case of fixed-angle illumination.
One next considers a case in which the illumination light
forms an annular cone. This configuration is commonly
seen when using a commercially available dark-field micro-
scope.

B. Annular Illumination with Unpolarized Light. The
treatments of this problem follow those in the previous
case. The experimental observables are first calculated separately
for the EBi,||- andEBi,⊥-polarized light, then combined at the end
to represent the results for illumination from unpolarized
light. Instead of having a fixed azimuthal angle for the incident
beam, Φi is integrated over 0 to 2π (cf. Figure 3). The

magnitudes of the induced dipole moments under annular
illumination are

and

where the “O” symbol in the subscript denotes annular illumina-
tion. Note that, compared with eq 17, the magnitude of the
induced dipole moment no longer depend on the azimuthal angle
φ. The scattering intensity is calculated using

After some algebraic manipulations, theX- and Y-polarized
intensities in this annularly illuminated configuration are found
to be identical to those derived for fixed-angle illumination in
eqs 20 and 21, except the induced dipole moments resulting
from an incident field polarization parallel or perpendicular to
the incident plane are now replaced by eqs 22 and 23,
respectively.

The preceding discussions show that, except for the magnitude
of the induced dipole moment due to different illumination
geometry, the basic formulation for relating the polarization of
the scattering light to the orientation of a rodlike scatterer are
the same for fixed-angle and for annular illuminations. This
further suggests the feasibility of using single-particle light
scattering to extract the absolute orientation of a scatterer with
unpolarized, annularly illumination. This idea is explored below.

C. Rapid Imaging of the Absolute Orientation of an
Immobilized Rodlike Scatterer. A corollary of the previous
discussion is thatθ andφ, and therefore the absolute orientation
of the particle’s polarizability along 3ˆ, can be quickly determined
by scattering experiments using a method analogous to that
described by Fourkas for single fluorophores.22 In essence,θ
andφ can be determined if the scattering fields polarized along
theΦs ) 0 (coincide with theX̂-axis,Is,X ), Φs ) π/4 (45°), Φs

) π/2 (90°, coincide with theŶ-axis,Is,Y ), andΦs ) 3π/4 (135°)
directions are measured. The electric fields that pass through
the polarization analyzer and detected by the detector in
these cases areEBdetector,0° ) (1,0,0)‚EBdetector, EBdetector,45° ) (1/
x2)(1,1,0)‚EBdetector, EBdetector,90° ) (0,1,0)‚EBdetector, and EBdetec-

tor,135° ) (1/x2)(1,-1,0)‚EBdetector. The scattering light intensity
analyzed at these angles can be calculated as before:

Figure 3. Scheme for an annular illumination configuration.

Is,X ) Is,||,X + Is,⊥,X ) I0(|pkL,|||2 + |pkL,⊥|2)(A + B sin2 θ +
C cos 2φ sin2 θ) (20)

Is,Y ) Is,||,Y + Is,⊥,Y ) I0(|pkL,|||2 + |pkL,⊥|2)(A + B sin2 θ -
C cos 2φ sin2 θ) (21)

|pkL,||O|2 ) 1
2π ∫0

2π
pkL,||* ‚pkL,|| dΦi )

R3
2

8
[3 + cos 2θ -

cos 2Θi(1 + 3 cos 2θ)] (22)

|pkL,⊥O|2 ) 1
2π ∫0

2π
pkL,⊥* ‚pkL,⊥ dΦi )

R3
2

2
sin2 θ (23)

Is,O,X or Y(t) )

I0( 1

8π2 ∫0

2π
dΦi ∫0

2π
dΦs∫π-∆

π |Rzrr̂s × (r̂s × pkL(t))detector,X or Y|2 ×

sin Θs dΘs) (24)

Is,0° ) Is,||O,0° + Is,⊥O,0° ) I0(|pkL,||O|2 + |pkL,⊥O|2)(A + B sin2 θ +
C cos 2φ sin2 θ)

Is,45° ) Is,||O,45° + Is,⊥O,45° ) I0(|pkL,||O|2 + |pkL,⊥O|2)(A + B sin2 θ -
C sin 2φ sin2 θ)

Is,90° ) Is,||O,90° + Is,⊥O ,90° ) I0(|pkL,||O|2 + |pkL,⊥O|2)(A + B sin2 θ -
C cos 2φ sin2 θ)

Is,135° ) Is,||O,135° + Is,⊥O,135° ) I0(|pkL,||O|2 + |pkL,⊥O|2)(A +
B sin2 θ + C sin 2φ sin2 θ)
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The orientation of the scatterer,θ andφ, can be calculated using
a combination of the above equations. There are several ways
of achieving this goal; here, only one example is given,

where

is the reduced linear dichroism (cf. eq 15). Equation 25 allows
for a rapid determination of a single rodlike scatterer’s
absolute orientation. The formulas appear very simple because
only one principal polarizability component along a particular
direction is involved in this scattering problem. For problems
involving more than one scattering tensorial component,
such as the spheroid scattering problem discussed in the
next section, imaging the absolute orientation is expected to
become more complicated and is likely to require numerical
solutions.

D. Light Scattering from an Immobilized Spheroidal
Nanoparticle with Annular Illumination. Another commonly
encountered example is light scattering from individual, nearly
spherical nanoparticles. For such a nanoparticle with a diameter
much less than the wavelength of the interrogating lights
therefore, the surface “roughness” is on a length scale that is
even much smaller than the size of the particlesits interaction
with an electric field can usually be described by the dipole
approximation. Consequently, although a nanoscale scatterer in
general may appear irregular and nonspherical under a high-
resolution electron microscope, these features are usually not
identifiable by far-field optical methods. With this in mind, this
section outlines the application of the theoretical framework to
symmetric spheroid particles.

The polarizability tensor is assumed to be symmetric; that
is, R1 ) R2 * R3 in eq 1. For nearly spherical particles, one
may further use the isotropic and anisotropic polarizabilities to
describe the scattering intensity:

For perfectly spherical particles (R1 ) R2 ) R3), one hasRaniso

) 0 andRiso ) R3. The other limiting case, a rodlike scatterer
(R1 ) R2 ) 0), gives Riso ) 1/3R3 and Raniso ) 3Riso. The
experimentally measured scattering intensities can be calculated
as before (using eq 24), but now the illumination and the
scattering parts can no longer be separated like those seen in
eqs 18 and 19. After some algebraic manipulations, theX- and
Y-polarized intensities are found to be

and

respectively, whereH ≡ cos 2Θi is also a constant for a given
experimental configuration. Notice the sign change in terms that
contain cos 2φ. For a perfectly spherical scatterer, one has
limRanisof0(Is,O,X - Is,O,Y) ) 0, verifying that the reduced linear
dichroism for a perfectly spherical scatterer is zero. On the other
hand, it can also be easily verified that the linear dichroism,ød

) (Is,O,X - Is,O,Y)/(Is,O,X + Is,O,Y), for a spheroidal scatterer reduce
to that of a rodlike scatterer in eq 26. This is also verified.

The analytical expressions presented in this section in
principle can also be used for dynamic imaging to follow the
polarization changes of individual nanostructures in real time.
It ought to be noted, however, that the intensities include
measurement uncertainties as well as background scattering.
These factors are likely to be dependent on the experimental
setup and have to be explicitly included in discussing experi-
mental results. For instance, the noise statistics are expected to
be different for different detectors; e.g., the data from single-
photon-counting avalanche photodiodes should be treated dif-
ferently than that from a charge coupled device (CCD) camera.
The formulas derived here nevertheless provide a convenient
venue to analytically incorporate different noise (and back-
ground) characteristics. For example, ideas in many of the
advanced statistical methods to quantitatively extract the time-
dependent behavior developed for single-molecule33,34or single-
particle35 experiments should be directly applicable with no or
minor modifications. For faster orientational or structural
changes, time correlation function is used to recover the
underlying dynamics. The correlation approach has the ad-
ditional advantage that the uncorrelated background and noise
does not contribute to the correlation trace. For both the imaging
and the correlation applications, it is important for an experi-
mentalist to ensure that the complicating multiple scattering does
not contribute appreciably to the experiment.

4. Rotation-Coupled Fluctuations in Light Scattering

Experimentally, dynamic light scattering from a single particle
has been obtained by suspending the particle in a medium.36 A
recent example is the study of a single optically trapped
500 nm silica bead, where the translational Brownian motion
and the three-dimensional trapping force can be deduced from
the dynamical scattering intensity fluctuations.37 An alternative
approach is to let the nanoparticle to be studied freely moving
inside the host medium in three dimensions. One then moves
the sample container to counteract the translational Brownian
movements such that the particle is always at the focus of a
microscope.14,28 With these possible experimental realizations
in mind, the theoretical framework outlined below assumes that
the translational degree of freedom can be neglected, either by
separation of time scale (e.g., particle in a viscous medium) or
by actively canceling the translational motion. Such experiments
therefore extract the dynamics related to the rotational degree
of freedom and potentially can shed light on the manner in which

φ ) 1
2

tan-1(Is,135° - Is,45°

Is,0° - Is,90°
) θ ) sin-1 (x Aød

C cos 2φ - Bød
)
(25)

ød )
Is,0° - Is,90°

Is,0° + Is,90°
) C cos 2φ sin2 θ

A + B sin2 θ
(26)

Riso ≡ 1
3

(R3 + 2R1) and Raniso≡ (R3 - R1) (27)

Is,O,X ) 1
18

[(7A + 3B - 3AH + BH)Raniso
2 - 6(A + 3B + 3AH +

BH)RanisoRiso + 9(4A + 3B + BH)Riso
2] + 1

12
[(A + 3AH +

8BH)Raniso
2 + 6(A + 3B + 3AH + BH)RanisoRiso] sin2 θ +

1
6

[(9C + 3CH)RanisoRiso - 4CHRaniso
2] cos 2φ sin2 θ +

1
4

(C + 3CH)Raniso
2 cos 2φ sin4 θ + 1

4
(B + 3BH)Raniso

2 sin4 θ

(28)

Is,O,Y ) 1
18

[(7A + 3B - 3AH + BH)Raniso
2 - 6(A + 3B + 3AH +

BH)RanisoRiso + 9(4A + 3B + BH)Riso
2] + 1

12
[(A + 3AH +

8BH)Raniso
2 + 6(A + 3B + 3AH + BH)RanisoRiso] sin2 θ -

1
6

[(9C + 3CH)RanisoRiso - 4CHRaniso
2] cos 2φ sin2 θ -

1
4

(C + 3CH)Raniso
2 cos 2φ sin4 θ + 1

4
(B + 3BH)Raniso

2 sin4 θ

(29)
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internal structural fluctuations are coupled to the diffusion tensor.
Because the capability to perform this kind of experiment was
only recently made possible,14,28theoretical treatments appropri-
ate for relating experimental observations to the microscopic
dynamics have not yet been developed. It is therefore the goal
of this section to put forth such a framework. The discussion
will remain in the context of scattering from a single particle
exhibiting cylindrical symmetry both in the polarizability tensor
and in its diffusion tensor.

A. Basic Formulation. In such experiments, the dynamics
are generally contained in the time correlation function of the
reduced linear dichroism,

where T is the length of the single-particle scattering time
trajectory. As discussed earlier,ød is a function ofθ and φ,
which change as functions of time as the particle rotates in three
dimensions. In the preceding discussions,θ andφ have been
used for the development of the theoretical framework because
they deliver a relatively more transparent physical picture, for
example, in imaging the orientations of single nanoparticles.
In the context of discussing rotational motions, however, it is
more convenient to use the Wigner rotation matrix elements
(Dm,n

(l) [Ω(t)]; Ω’s are Euler angles introduced earlier) to carry
out the various coordinate transformations as well as to describe
the dynamical behavior. IfT is much greater than any time scale
that is relevant to rotational relaxation, then the rotational states
as given byΩ will have been sufficiently sampled by the
particle. Under these conditions, eq 30 can be approximated as

whereP[Ω(0)] ) (8π2)-1 is the equilibrium distribution of the
rotational states andG[Ω(t)|Ω(0)] is Green’s function describing
the conditional probability of finding the particle atΩ(t) at time
t given that it is atΩ(0) at time 0. Thus, the rotational dynamics
of the particle is contained in Green’s function. Here, the
discussion will focus on diffusion-type motions following the
Stokes-Einstein-Debye relationship.38 In accordance with the
previous discussion for particles exhibiting a polarizability tensor
with cylindrical symmetry, the following discussion will further
be restricted to the cases where the tensor for three-dimensional
diffusion also exhibits cylindrical symmetry.

It is necessary to introduce an additional reference frame
associated with the diffusion tensor (denoted by a subscript D
wherever appropriate). The diffusion frame, as defined by the
principal components of the diffusion tensor, may not necessarily
overlap with the polarizability frame. The transformation
between them can also be achieved via the Euler angles as
before. It is assumed the relative orientation of the diffusion
frame with respect to the polarizability frame is also independent
of time. This assumption is easily met when the particle under
investigation can be viewed as a rigid rotor within the time scale
of investigation.

By Favro,39 Green’s function for symmetric-top rigid rotor
is

where D⊥ and D|| are diffusion coefficients associated with
rotational motions about the axes that are perpendicular and
parallel to the symmetry axis of the particle, respectively. Notice
that this equation is expressed in terms of the relative orienta-
tions between the diffusion and the laboratory frames,ΩLD,
whereas the reduced linear dichroism calculated using eqs 28
and 29 are based on the relative orientation between the
polarizability frame and the laboratory frame, denoted byΩLP.
Equation 31 can be further reduced following the treatments of
Szabo40 for fluorescence depolarization, and those of Hinze
et al.23 for rotational correlation of reduced linear dichroism
from single-molecule fluorescence. Briefly, one makes use of
the orthogonal properties of the Wigner rotation matrix ele-
ments,29

to expand the reduced linear dichroism in terms of the matrix
elements and obtains

whereKl,m ) [(2l + 1)/8π2]∫dΩ Dm,0
(l) (Ω)*ød. ΩLP(t) in eq 34

and ΩLD(t) in eq 32 are related byΩLP(t) ) ΩLD(t) + ΩDP,
whereΩDP is the relative orientation between the polarizability
frame and the diffusion frame and is assumed to be time
independent. Using the transformation property of the Wigner
matrix elements,

and eqs 32-34, eq 31 becomes

It is clear from eq 36 that, in general, the correlation function
will exhibit a multiexponential decay, even for the case of
symmetric-top diffusers. In general, one may use numerical
methods to assess the relative weights of the differentl-
component exponential decays for single-particle light-scattering
experiments, as has been done for fluorescence single-molecule
rotations with24 and without23 considering the numerical aperture
of the collimating lens. Multiple exponential decays in the
correlation function from single-particle dynamic light scattering
experiments is in contrast to the cases in conventional hetero-
dyne light scattering experiments,19 and to those in fluorescence
depolarization.40 In both experimental schemes, the observables
transform asl ) 2 spherical harmonics (orl ) 2 Wigner rotation
matrices) such that only thel ) 2 components in the rotational
diffusion Green’s function are selected. Hence, the maximum
number of exponentials in the polarization correlation for
symmetric-top diffusers is 3. The exact form of the time
correlation function such as the number of exponentials critically
depends on how the experimental observables are measured and
defined. For example, in eq 36 the observable is defined byød

) (IX - IY)/(IX + IY), where the homodyne detected intensities
IX andIY are measured. The correlation function is further shaped
by the experimental configuration such as the illumination and
collimation numerical aperture (contained in theKl,m parameter
in eq 36), as well as by the polarizability tensorr (also contained
in Kl,m), the diffusion tensorD (appearing in the exponent), and

〈ød(t) ød(0)〉T ) 1
T∫0

T
ød(t+τ) ød(τ) dτ (30)

〈ød(t) ød(0)〉T ≈ 〈ød(t) ød(0)〉

) ∫ dΩ(t) ∫ dΩ(0) ød[Ω(t)] G[Ω(t)|Ω(0)] ×
ød[Ω(0)] P[Ω(0)] (31)

G[ΩLD(t)|ΩLD(0)] ) ∑
l,m,n

(2l + 1

8π2 ) Dmn
(l) [ΩLD(t)] Dmn

(l) [ΩLD(0)]* ×

exp[-l(l + 1)D⊥ t + n2(D|| - D⊥)t] (32)

∫dΩ Dm′,n′
(l′) (Ω)* Dm,n

(l) (Ω) ) 8π2

2l + 1
δl,ln′δm,m′δn,n′ (33)

ød(t) ) ∑
l,m

Kl,mDm,0
(l) [ΩLP(t)] (34)

Dm,0
(l) [ΩLP(t)] ) ∑

µ

Dm,µ
(l) [ΩLD(t)] Dµ,0

(l) (ΩDP) (35)

〈ød(t) ød(0)〉 ) ∑
l

1

2l + 1
[ ∑
m )-l

l

|Kl,m|2][ ∑
n)-l

l

|Dn,0
(l) (ΩDP)|2 ×

e-l(l+1)D⊥t +n2(D||-D⊥)t] (36)
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the coupling between them (contained inDn,0
(l) (ΩDP)). There-

fore, these analytical expressions allow one to evaluate different
contributions separately affording a quantitative interpretation
of the experimental results. For example, a metallic nanoparticle
can be considered as a rigid rotor with its polarizability related
to its shape by electrostatic approximation (cf. eq 45). This, in
turn, allows one to investigate the dynamical interactions
between the scatterer (now can be viewed as a nanoprobe) and
its microscopic environment, contained in the diffusion coef-
ficients D⊥ andD||.35

In practice, considering the strongly stochastic nature of
single-molecule or single-particle time trajectories and the
experimental noise contained within them, the experimental data
may not be able support multiexponential models with sufficient
statistical confidence. For example, anl ) 2 decay relaxes with
a rate of∼6D⊥ whereas anl ) 4 decay relaxes with a rate that
is 3 times greater (∼20D⊥). The two requirements for an
experimental data set to support a multiexponential model are
(1) high time resolution to observe greaterl components and
(2) long-term observation to improve the signal-to-background
ratio. The second requirement is an important characteristic of
single-particle or single-molecule experiments where averaging
is carried out in the time domain (cf. eq 30). These requirements
may not always be attainable in an experiment. Therefore, it
would be helpful to obtain analytical expressions under certain
approximations to allow the determination of the dominatingl
components. This, in turn, will allow one to construct appropri-
ate models that provide physical insights about the microscopic
dynamics. For instance, if an analysis of experimental results
indicates the dominating term belongs to anl component other
than 2, then one has to consider models more complicated than
a nearly spherical scatterer with cylindrical symmetry.

The next three sections illustrate how the general ideas
discussed above are applied to different examples. One seeks
to obtain analytical expressions using a perturbative approach
for nearly spherical scatterers under the widely used annular
illumination.

B. Rodlike Scatter Diffusers.The reduced linear dichroism
for a single rodlike scatter-diffuser has been derived in eq 26.
This expression is identical to the one obtained for single
fluorescent molecule by Wei et al.;24 therefore, their results are
directly applicable. Generally, these authors found the rotational
relaxation should exhibit multiexponential decay includingl )
2, 4, ... components with thel ) 2 component being the
dominant one. Furthermore, the weight of thel ) 2 component
increases from 0.84 for NA) 0 for the collimating objective
to 0.99 for NA ) 1.2.23,24 These results can be understood
graphically by plotting eq 26 in three dimensions, shown in
Figure 4. In general, it is clear the shape of the reduced linear
dichroism resembles an atomic d-orbital (e.g., dx2-y2), described
by the l ) 2 spherical harmonics. It is therefore not surprising
the decay is dominated by thel ) 2 component. This graphical
interpretation can be understood with the help of the connection
formula,29

By virtue of the orthogonal property of the Wigner matrices in
eq 33, the dominantl component in Green’s function for
rotational diffusion (eq 36) is selected out by the “shape” of
the observable. If the shape of the observable resembles thel
) 2 spherical harmonics function, the decay will be dominated
by thel ) 2 components. As the numerical aperture decreases,
the deviation of eq 26 from a d-like orbital becomes more
significant, hence the reduced weight in thel ) 2 component.

C. Nearly Spherical Scatter Diffusers.For nearly spherical
scatter-diffusers that exhibit cylindrical symmetry both in the
diffusion and in the polarizability tensors, the reduced linear
dichroism (eq 15) as calculated using eqs 28 and 29, can be
expanded in powers of (Raniso/Riso). To the first-order ap-
proximation, this gives

where the connection formula in eq 37 has been used to arrive
at the second line. It is immediately clear that the signal vanishes
for scatterers exhibiting isotropic scattering polarizability, or
Ranisof 0. This is true regardless of the shape or size of the
particle. Furthermore, one would expect the decay of the
correlation function to be dominated by thel ) 2 components
(cf. Figure 5). Experimental parameters such as NA of the
collimating lens (affectingA, B, and C) and NA of the
illumination optic (affectingH) only modifies the magnitude
of the observable,ød, but not its three-dimensional shape. More
specifically, for the reduced linear dichroism, one has

The above equation reduces to a single-exponential decay when
(D||-D⊥) f 0. This procedure can be used to obtain higher-
order terms in (Raniso/Riso) should the experimental data indicate
an l dependence that is higher thanl ) 2. When the NA of the
collimating lens approaches zero (experiment without high-NA
collimating lens), the magnitude of this correlation function
approaches 2/15) 0.13, i.e., lim∆f0[(3C + CH)/(4A + 3B +
BH)]2 f 1. In general, just as the three-dimensional shape of
the reduced linear dichroism depends on the NA of the
collimating lens (cf. Figure 5), the magnitude of the correlation
function depends on the NA for the incident illumination as
well as on the NA for the collimating lens. The prefactor is

Figure 4. Three-dimensional shape for the reduced linear dichroism,
ød (eq 26), for a single rodlike scatterer as observed through a
collimating lens of numerical apertures (NA) 0.2, 0.6, and 1.0. The
particle is assumed to be illuminated annularly with an NA) 1.2 dark-
field condenser. The shape at NA) 1.0 resembles that of an atomic
dx2-y2 orbital but appears to deform along the Z direction (see theX
andYprojections) as the NA of the collimating lens decreases. Columns
1 are viewed from (2, 1.3, 2.4), whereas columns 2-4 are viewed from
+X, +Y, and+Z directions, respectively.
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[ ∑
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plotted as a function of the numerical apertures and is displayed
in Figure 6. Because all the setup-dependent coefficients are
constant for a given experiment, eq 39 provides a way to directly
measure the relative anisotropy of a particle (Raniso/Riso), as well
as its distribution among an ensemble of particles.

Up to this point, the discussions have focused on the general
aspects of the theoretical framework, in which the explicit form
of the polarizability tensor,r, has not been specified. New
experimental observations, on the other hand, combined with
certain theoretical models are likely shed new light on the
manner by which the various microscopic parameterssthe
polarizability tensor, the diffusion tensor, and the particle
shapesare coupled together to give rise to the observations.
The next section discusses one such example.

D. Spectral Fluctuations. As indicated in eq 1, the polar-
izability tensor is a function of the frequency of the incident
light. Therefore, in addition to fluctuations in the polarizations
of the scattered light as the particle undergoes rotational
diffusion, one would expect to observe fluctuations in the
scattering spectrum as well.18 For this kind of experiment, a
multichromatic or white light is used as an illumination source.
To separate the intensity contributions due to polarization
fluctuations from those due to spectral fluctuations, a spectral

filter is placedafter the polarization analyzer (cf. Figure 1).
The spectral filter may reflect light with frequencies greater than
its cutoff frequency (ω0) to give theIB signal, and transmit light
with frequencies lower thanω0 to give theIR signal. Analogous
to the reduced linear dichroism, the quantity of interest is the
reduced spectral contrast, defined by

where the subscript indicates that the spectral contrast is
measured after theX or Y polarization analyzer. Using the
X-polarized scattering light as an example, the origin of the
spectral fluctuation can be made more apparent by re-expressing
eq 28 in terms ofR1(ω) andR3(ω) to arrive at

where

Therefore, as the particle rotates theθ and φ angles change.
This in turn alters the magnitudes ofW11, W13, andW33 such
that the relative contributions from theR1(ω)2, R1(ω) R3(ω), and
R3(ω)2 terms will also change as a function of time. If the
differences in the spectral densities ofR1(ω) and R3(ω) are
experimentally detectable, one is expected to observe spectral
fluctuations that are correlated with the rotational dynamics.
Using eq 41, the “red” and the “blue” components of the
scattering spectrum can now be defined as

and

respectively. In an experiment, the upper and lower bounds in
the above expressions may be defined by the dichromatic filters
used. The choice of the optical filter does not affect the results.
The goal here then is to apply the theoretical framework to
determine the dominantl-components in the time correlation
function, 〈øXs(t) øXs(0)〉, and to relate such a theoretical under-
standing to experimental observations.

Figure 5. Three-dimensional shape for the reduced linear dichroism,
ød (eq 38), for a nearly spherical scatterer as observed through a
collimating lens of numerical apertures (NA) 0.2, 0.6, and 1.0. The
particle is assumed to be illuminated annularly with an NA) 1.2 dark-
field condenser. The shapes are seen to be independent of the NA of
the collimating lens. Columns 1 are viewed from (2, 1.3, 2.4), whereas
columns 2-4 are viewed from+X, +Y, and+Z directions, respectively.

Figure 6. Amplitude of the time-correlation function in the fluctuation
of reduced linear dichroism (eq 39) as a function of the numerical
apertures for the collimation lens and illumination condenser. The inset
displays the amplitude along the diagonal line as a function of the
numerical aperture, with the dashed line indicating 2/150z 133. A
maximum is seen to occur when the numerical apertures for both the
collimating and illuminating lenses are at∼0.675. The index of
refraction for the medium is assumed to be 1.33 for these calculations.
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The problem at hand requires the use of a model for the
polarizability tensor that explicitly incorporates the frequency
response. For example, one may use the electrostatic ap-
proximation for spheroids (Rayleigh-Gans model):15,41-43

where ai is the semimajor (semiminor) axis along theith
polarizability principal component witha1 e a2 e a3, εr(ω) )
εm(ω) - 1 is the reduced relative permittivity, andLi is the
shape factor defined by

with f(q) ) x(q+a1
2)(q+a2

2)(q+a3
2). In accordance with the

previous sections, here one focuses on cases that exhibit a
cylindrical symmetry under annular illumination. This model
has been shown to work reasonably well even with metallic
nanorods (within linear scaling when compared with experi-
ments).44,45

Equation 41 indicates that, in general, the correlation function,
〈δøXs(t) øXs(0)〉, will show complicated multiexponential behav-
ior. However, for nearly spherical symmetric scatter-diffusers,
analytical expressions can be obtained to afford physical
insights. It can be shown that to the lowest order approximation
in ê, the angle-dependent part of the reduced spectral contrasts
giving rise to spectral fluctuations as the particle undergoes
rotational Brownian motionshas the following form

where ê ≡ amajor / aminor -1 with amajor and aminor being the
semimajor and semiminor axes of the particle, respectively. A
series of graphical representations for eq 47 as calculated using
a collimating lens of different numerical aperture is displayed

in Figure 7. Therefore, the spectral fluctuations at this level of
approximation can be visualized as three-dimensional rotational
diffusion of these objects. More specifically, the time correlation
in the fluctuations of the reduced spectral contrast decays asl
) 2, regardless of the shape of the particle (outlined in the
Supporting Information):

whereF2(ω0,εr), defined in the Supporting Information, is a
function of the cutoff frequency of the reduced relative
permittivity of the particle-medium system (εr) and the dichro-
matic mirror for discriminating the blue and the red portion of
the scattering spectrum (ω0). Analogous to the case in reduced
linear dichroism, the magnitude of the correlation function
depends on the deviation from a perfect sphere (ê), the
experimental configuration (F2(ω0,εr) and the term contained
in the parenthesis), and the relative orientation of the polariz-
ability tensor and the diffusion tensor,ΩDP. The formulation
presented above also predicts that the spectral fluctuation
vanishes for a perfect sphere,ê ) 0. Furthermore, although the
model explicitly incorporates the particle size in the polariz-
ability, the spectral fluctuation is independent of the particle
size at this level of approximation. The experimental configu-
ration-dependent prefactor is found to approach 2/9) 0.22 as
the NA of the collimating lens approaches 0, independent of
the NA of the illumination condenser. Figure 8 shows how the
magnitude of the correlation depends on the NA of the
illumination condenser as well as on the NA of the collimation
lens. Because the prefactor is fixed for a given experiment,
eq 48 in principle can be used to characterize the extent to which
a particle deviate from being a perfect sphere, as well as the
distribution of this parameter in an ensemble of particles.

5. Summary

A formal connection between the microscopic polarizability
tensor of a light scattering nanoparticle (or nanostructure) and
the far-field detected signal has been established. The use of
this procedure was illustrated using two typical experimental

Figure 7. Three-dimensional shape for the reduced color contrast along
X-polarized light,øxs (eq 47), for a nearly spherical scatterer as observed
through a collimating lens of numerical aperture (NA) 0.2, 0.6, and
1.0. The particle is assumed to be illuminated annularly with an NA)
1.2 dark-field condenser. The three-dimensional shape can be seen to
change significantly as the NA of the collimating lens changes. Yet,
as eq 47 indicates, they all belong to thel ) 2 spherical harmonics.
Therefore, the overall rotational dynamics under this approximation
still follows the l ) 2 pattern. Columns 1 are viewed from (2, 1.3,
2.4), whereas columns 2-4 are viewed from the+X, +Y, and +Z
directions, respectively.
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Figure 8. Numerical aperture-dependent amplitude of the time-
correlation function in the fluctuation of reduced spectral contrast (eq
48) as a function of the numerical apertures for the collimation lens
and illumination condenser. The inset displays the amplitude along the
diagonal line as a function of the numerical aperture. The index of
refraction for the medium is assumed to be 1.33.
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configurations, grazing-angle and dark-field annular illumina-
tion. The theoretical framework established here is general and
is expected to contribute to the quantitative understanding of
experimental results. Further insights for particles of more
complicated geometries that are beyond dipole approximation
can be obtained, for example, with the aid of such theoretical
model as the discrete-dipole approximation,46,47which has been
shown to be applicable to metallic nanostructures.48 As a
corollary, a method for using light scattering to rapidly imaging
the absolute orientation of a nanostructure with a dominant
polarizability tensorial component has also been given. In
principle, this imaging method can be used to monitor time-
dependent changes in the orientation of individual nanoparticles,
in particular those that are nonfluorescent.

The analysis for particles that appear immobile on the
experimental time scale has been extended to cases in which
the time scales of the particle dynamics and the experimental
measurements are comparable. These results form the theoretical
basis for rotational single-particle dynamic light scattering that
takes into account practical experimental issues such as the use
of annular illumination and the high numerical aperture micro-
scope objective for light collection. Using reduced linear
dichroism as the observable, the time correlation function for a
nearly spherical nanoparticle exhibiting cylindrical symmetry
is shown to decay exponentially with a time constant of
∼(6D⊥)-1. As an application of the theory, the case of spectrally
resolved dynamic light scattering is discussed. Using a simple
electrostatic model explicitly relating the spectral response in
the polarizability tensor to the shape of a nanoparticle, the theory
suggests that the spectral fluctuations due to the rotational
Brownian motion of the particle may become detectable in
single-particle dynamic light scattering experiments.

Compared to a fixed-angle illumination setup, the annular
illumination configuration removes the azimuthal-angle depen-
dence for the magnitude of the induced dipole. The high
numerical aperture for collecting the light scattered from a single
particle mixes polarization components30 that are not observable
in the zero numerical aperture configuration in conventional
ensemble-averaged experiments. The reduced linear dichroism
(or the reduced spectral contrast as defined in this article) that
is typically used in single-particle or single-molecule experi-
ments further makes it challenging to extract information about
the particle’s rotational relaxation from the time correlation
functions. All these have been shown to significantly impact
the way in which experimental results are understood in
microscopic terms. The formulations presented in this article
take into account these considerations in single-particle light
scattering experiments and will assist in a better understanding
of nanoscale structures and the dynamics they exhibit.
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(25) Sönnichsen, C.; Geier, S.; Hecker, N. E.; von Plessen, G.; Feldmann,

J.; Ditlbacher, H.; Lamprecht, B.; Krenn, J. R.; Aussenegg, F. R.; Chan, V.
Z. H.; Spatz, J. P.; Mo¨ller, M. Appl. Phys. Lett.2000, 77, 2949.

(26) Eah, S. K.; Jaeger, H. M.; Scherer, N. F.; Wiederrecht, G. P.; Lin,
X. M. J. Phys. Chem. B2005, 109, 11858.

(27) Ignatovich, F. V.; Novotny, L.Phys. ReV. Lett.2006, 96, 013901.
(28) Cang, H.; Wong, C. M.; Xu, C. S.; Rizvi, A. H.; Yang, H.Appl.

Phys. Lett.2006, 88, 223901.
(29) Rose, M. E.Elementary Theory of Angular Momentum; Dover:

New York, 1995.
(30) Axelrod, D.Biophys. J.1979, 26, 557.
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